4.3 Article

How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae

Journal

JOURNAL OF PALEOLIMNOLOGY
Volume 42, Issue 4, Pages 483-495

Publisher

SPRINGER
DOI: 10.1007/s10933-008-9299-y

Keywords

Testate amoebae; Protists; Palaeoecology; Palaeohydrology; Palaeoclimate; Peatlands

Funding

  1. University of Manchester Humanities Research Fellowship
  2. CBRL Visiting Fellowship
  3. Wyndham Deedes Scholarship
  4. Swiss SNF [205321-109709/1]
  5. CCES
  6. BigLink

Ask authors/readers for more resources

Testate amoebae are increasingly used in ecological and palaeoecological studies of wetlands. To characterise the amoeba community a certain number of individuals need to be counted under the microscope. To date, most studies have aimed for 150 individuals, but that sample size is not based on adequate evidence. When testate amoeba concentrations are low, it can be difficult or impossible to reach this total. The impacts of lower count totals have never been seriously scrutinised. We investigated the impact of count size on number of taxa identified, quantitative inferences of environmental variables and the strength of the links between amoebae and environmental data in the context of predicting depth to water table. Low counts were simulated by random selection of individuals from four existing datasets. Results show progressively diminishing returns by all criteria as count size increases from low numbers to counts of 150. A higher count is required to identify all taxa than to adequately characterise the community for transfer function inference. We suggest that in most cases, it will be a more efficient use of time to count a greater number of samples to a lower count. While a count of 50 individuals may be sufficient for some samples from some sites we recommend that counts of 100 individuals should be sufficient for most samples. Counts need only be increased to 150 or more where the aim is to identify relatively minor, but still potentially ecologically relevant community changes. This approach will help reduce lack of replication and low resolution, which are common limitations in testate amoeba-based palaeoecological and ecological studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available