4.5 Article

Local Manganese Chloride Treatment Accelerates Fracture Healing in a Rat Model

Journal

JOURNAL OF ORTHOPAEDIC RESEARCH
Volume 33, Issue 1, Pages 122-130

Publisher

WILEY-BLACKWELL
DOI: 10.1002/jor.22733

Keywords

manganese chloride; insulin-mimetic; fracture healing; bone regeneration; rat

Categories

Funding

  1. CreOsso

Ask authors/readers for more resources

This study investigated the effects of local delivery of manganese chloride (MnCl2), an insulin-mimetic compound, upon fracture healing using a rat femoral fracture model. Mechanical testing, histomorphometry, and immunohistochemistry were performed to assess early and late parameters of fracture healing. At 4 weeks post-fracture, maximum torque to failure was 70% higher (P<0.05) and maximum torsional rigidity increased 133% (P<0.05) in animals treated with 0.125mg/kg MnCl2 compared to saline controls. Histological analysis of the fracture callus revealed percent new mineralized tissue was 17% higher (P<0.05) at day 10. Immunohistochemical analysis of the 0.125mg/kg MnCl2 treated group, compared to saline controls, showed a 379% increase in the density of VEGF-C+ cells. In addition, compared to saline controls, the 0.125mg/kg MnCl2 treated group showed a 233% and 150% increase in blood vessel density in the subperiosteal region at day 10 post-fracture as assessed by detection of PECAM and smooth muscle actin, respectively. The results suggest that local MnCl2 treatment accelerates fracture healing by increasing mechanical parameters via a potential mechanism of amplified early angiogenesis leading to increased osteogenesis. Therefore, local administration of MnCl2 is a potential therapeutic adjunct for fracture healing. (c) 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 33:122-130, 2015.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available