4.6 Article

Observation of unconventional splitting of Landau levels in strained graphene

Journal

PHYSICAL REVIEW B
Volume 92, Issue 24, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.92.245302

Keywords

-

Funding

  1. National Basic Research Program of China [2014CB920903, 2013CBA01603]
  2. National Natural Science Foundation of China [11422430, 11374035]
  3. program for New Century Excellent Talents in University of the Ministry of Education of China [NCET-13-0054]
  4. Beijing Higher Education Young Elite Teacher Project [YETP0238]
  5. National Program for Support of Top-Notch Young Professionals

Ask authors/readers for more resources

In strained graphene, lattice deformation can create pseudomagnetic fields affecting the behavior of massless Dirac fermions and result in zero-field Landau level-like quantization. In the presence of an external magnetic field, valley-polarized Landau levels are predicted to be observed because the strain-induced pseudomagnetic fields are of opposite directions in the K and K' valleys of graphene. However, an experimental verification of such a unique valley-polarized Landau quantization has not been reported so far. Here, we present experimental spectroscopic measurements in strained graphene on Rh foil by scanning tunneling microscopy. We directly observed the splitting of the Landau level in the quantum Hall regime and we interpreted the experimental result as the valley-polarized Landau level induced by the coexistence of the pseudomagnetic fields and external magnetic fields. The observed result paves the way to exploit novel electronic properties in graphene through the combination of the spatially varying strain (or the pseudomagnetic fields) and the external magnetic fields.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available