4.6 Article

All-dielectric reciprocal bianisotropic nanoparticles

Journal

PHYSICAL REVIEW B
Volume 92, Issue 24, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.92.245130

Keywords

-

Funding

  1. German Science Foundation [RO 3640/7-1]
  2. DAAD (PPP Australien)
  3. Australian Research Council

Ask authors/readers for more resources

The study of high-index dielectric nanoparticles currently attracts a lot of attention. They do not suffer from absorption but promise to provide control of the properties of light comparable to plasmonic nanoparticles. To further advance the field, it is important to identify versatile dielectric nanoparticles with unconventional properties. Here, we show that breaking the symmetry of an all-dielectric nanoparticle leads to a geometrically tunable magnetoelectric coupling, i.e., an omega-type bianisotropy. The suggested nanoparticle exhibits different backscatterings and, as an interesting consequence, different optical scattering forces for opposite illumination directions. An array of such nanoparticles provides different reflection phases when illuminated from opposite directions. With a proper geometrical tuning, this bianisotropic nanoparticle is capable of providing a 2 pi phase change in the reflection spectrum while possessing a rather large and constant amplitude. This allows the creation of reflectarrays with near-perfect transmission out of the resonance band due to the absence of a usually employed metallic screen.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available