4.6 Article

Solving strongly correlated electron models on a quantum computer

Journal

PHYSICAL REVIEW A
Volume 92, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.92.062318

Keywords

-

Funding

  1. Microsoft Research
  2. Swiss National Science Foundation through the National Competence Center in Research NCCR QSIT
  3. ERC Advanced Grant SIMCOFE
  4. NSF [1066293]

Ask authors/readers for more resources

One of the main applications of future quantum computers will be the simulation of quantum models. While the evolution of a quantum state under a Hamiltonian is straightforward (if sometimes expensive), using quantum computers to determine the ground-state phase diagram of a quantum model and the properties of its phases is more involved. Using the Hubbard model as a prototypical example, we here show all the steps necessary to determine its phase diagram and ground-state properties on a quantum computer. In particular, we discuss strategies for efficiently determining and preparing the ground state of the Hubbard model starting from various mean-field stateswith broken symmetry. We present an efficient procedure to prepare arbitrary Slater determinants as initial states and present the complete set of quantum circuits needed to evolve from these to the ground state of the Hubbard model. We show that, using efficient nesting of the various terms, each time step in the evolution can be performed with just O(N) gates and O(log N) circuit depth. We give explicit circuits to measure arbitrary local observables and static and dynamic correlation functions, in both the time and the frequency domains. We further present efficient nondestructive approaches to measurement that avoid the need to reprepare the ground state after each measurement and that quadratically reduce the measurement error.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available