4.7 Article

Mechanisms and Origins of Switchable Regioselectivity of Palladium- and Nickel-Catalyzed Allene Hydrosilylation with N-Heterocyclic Carbene Ligands: A Theoretical Study

Journal

JOURNAL OF ORGANIC CHEMISTRY
Volume 79, Issue 10, Pages 4517-4527

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jo500557w

Keywords

-

Funding

  1. National Science Foundation of China [21203166, 91127010, 21273201]
  2. Natural Science Foundation of Zhejiang Province [Y4100620, LY12B04003]

Ask authors/readers for more resources

The mechanisms and origins for the Pd- and Ni-catalyzed regioselective hydrosilylation of allene have been investigated by means of density functional theory (DFT) calculations. The free-energy profiles of Pd- and Ni-catalyzed reactions with small and bulky N-heterocyclic carbene (NHC) ligands are calculated to determine the mechanism for regioselectivities. The calculation results show that different metals (Ni vs Pd) lead to regiochemical reversals for the hydrosilylation of allene. The allylsilane is the major product via palladium catalysis with small NHC ligand, while the vinylsilane is the major product via nickel catalysis with bulky NHC ligand. Both electronic and steric factors play a key role in the regioselectivities for the hydrosilylation of allene via Pd and Ni catalysts. The calculation results are in good agreement with observed regioselectivities and could provide insights into the design of new catalysts for the regioselectivity of hydrosilylation reactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available