4.6 Article

Periodic pseudo-Hermitian Hamiltonian: Nonadiabatic geometric phase

Journal

PHYSICAL REVIEW A
Volume 92, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.92.032106

Keywords

-

Ask authors/readers for more resources

It is well known that Hermitian operators have real eigenvalues while non-Hermitian ones may have complex eigenvalues. Recently, numerical and analytical results indicated that the spectra of many non-Hermitians Hamiltonians H are indeed real if they are invariant under the combined action of self-adjoint parity P and time reversal T. The concept of a pseudo-Hermitian operator showed that the remarkable spectral properties of the PT-symmetric Hamiltonians follow from their pseudo-Hermiticity. It is possible to explain these observations by the concept of pseudo-Hermitian operators and to formulate completeness and orthonormality relations. Most of the effort has been devoted to study time-independent non-Hermitian systems. In this paper, we study the exactly solvable time-dependent periodic pseudo-Hermitian Hamiltonians. The method introduced, to make the reality of eigenvalues and phases, is based on a Floquet decomposition of the evolution operator U-H (t) = Z(H) (t) exp(iM(H)t) associated with the periodic pseudo-hermitian Hamiltonian H(t) = H(t + T). One of the results found in this paper concerns a calculation of Berry's phase for periodic, but not necessarily adiabatic, pseudo-Hermitian Hamiltonians. A two-level pseudo-Hermitian system is discussed as an illustrative example.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available