4.7 Article

Development of Enantioselective Synthetic Routes to the Hasubanan and Acutumine Alkaloids

Journal

JOURNAL OF ORGANIC CHEMISTRY
Volume 78, Issue 20, Pages 10031-10057

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jo401889b

Keywords

-

Funding

  1. Department of Defense (NDSEG fellowship)
  2. Division of Organic Chemistry of the American Chemical Society
  3. Boehringer Ingelheim
  4. National Science Foundation [CHE-1151563]
  5. Searle Scholars Program
  6. Yale University

Ask authors/readers for more resources

We describe a general strategy to prepare the hasubanan and acutumine alkaloids, a large family of botanical natural products that display antitumor, antiviral, and memory-enhancing effects. The absolute stereochemistry of the targets is established by an enantioselective Diels-Alder reaction between 5-(trimethylsilyl)cyclopentadiene (36) and 5-(2-azidoethyl)-2,3-dimethoxybenzoquinone (24). The Diels-Alder adduct 38 is transformed to the tetracyclic imine 39 by a Staudinger reduction-aza-Wittig sequence. The latter serves as a universal precursor to the targets. Key carbon-carbon bond constructions include highly diastereoselective acetylide additions to the N-methyliminium ion derived from 39 and Friedel-Crafts and Hosomi-Sakurai cyclizations to construct the carbocyclic skeleton of the targets. Initially, this strategy was applied to the syntheses of (-)-acutumine (4), (-)-dechloroacutumine (5), and four hasubanan alkaloids (1, 2, 3, and 8). Herein, the synthetic route is adapted to the syntheses of six additional hasubanan alkaloids (12, 13, 14, 15, 18, and 19). The strategic advantage of 5-(trimethylsily)cyclopentadiene Diels-Alder adducts is demonstrated by site-selective functionalization of distal carbon-carbon it-bonds in the presence of an otherwise reactive norbornene substructure. Evaluation of the antiproliferative properties of the synthetic metabolites revealed that four hasubanan alkaloids are submicromolar inhibitors of the N87 cell line.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available