4.7 Article

NMR Spectroscopic and Computational Study of Conformational Isomerism in Substituted 2-Aryl-3H-1-benzazepines: Toward Isolable Atropisomeric Benzazepine Enantiomers

Journal

JOURNAL OF ORGANIC CHEMISTRY
Volume 78, Issue 16, Pages 8028-8036

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jo4013089

Keywords

-

Funding

  1. City University of New York

Ask authors/readers for more resources

Certain 2-aryl-3H-1-benzazepines are conformationally mobile on the NMR time scale. Variable-temperature NMR experiments bolstered by calculations indicate that alkylation of the azepine ring will slow the interconversion of conformational enantiomers markedly. DFT studies show that, while the substitution patterns of the aryl groups at C2 and C4 do not exert large effects on the rate of enantiomerization, alkylation at C5 slows it appreciably. Alkylation at C3 slows enantiomerization even more, possibly to the extent that isolation of atropisomers might be attempted.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available