4.6 Article

Extended convexity of quantum Fisher information in quantum metrology

Journal

PHYSICAL REVIEW A
Volume 91, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.91.042104

Keywords

-

Ask authors/readers for more resources

We prove an extended convexity for quantum Fisher information of a mixed state with a given convex decomposition. This convexity introduces a bound which has two parts: (i) The classical part associated with the Fisher information of the probability distribution of the states contributing to the decomposition, and (ii) the quantum part given by the average quantum Fisher information of the states in this decomposition. Next we use a non-Hermitian extension of a symmetric logarithmic derivative in order to obtain another upper bound on quantum Fisher information, which helps to derive a closed form for the bound in evolutions having the semigroup property. We enhance the extended convexity with this concept of a non-Hermitian symmetric logarithmic derivative (which we show is computable) to lay out a general metrology framework where the dynamics is described by a quantum channel and derive the ultimate precision limit for open-system quantum metrology. We illustrate our results and their applications through two examples where we also demonstrate how the extended convexity allows identifying a crossover between quantum and classical behaviors for metrology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available