4.7 Article

Why the Standard B3LYP/6-31G*Model Chemistry Should Not Be Used in DFT Calculations of Molecular Thermochemistry: Understanding and Correcting the Problem

Journal

JOURNAL OF ORGANIC CHEMISTRY
Volume 77, Issue 23, Pages 10824-10834

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jo302156p

Keywords

-

Funding

  1. German Academy of Science Leopoldina Fellowship Programme [LPDS 2011-11]

Ask authors/readers for more resources

We analyze the error compensations that are responsible for the relatively good performance of the popular B3LYP/6-31G* model chemistry for molecular thermochemistry. We present the B3LYP-gCP-D3/6-31G* scheme, which corrects for missing London dispersion and basis set superposition error (BSSE) in a physically sound manner. Benchmark results for the general main group thermochemistry, kinetics, and noncovalent interactions set (GMTKN30) are presented. A detailed look is cast on organic reactions of several arenes with C-60, Diels-Alder reactions, and barriers to [4 + 3] cycloadditions. We demonstrate the practical advantages of the new B3LYP-gCP-D3/6-31G* scheme and show its higher robustness over standard B3LYP/6-31G*. B3LYP-gCP-D3/6-31G* is meant to fully substitute standard B3LYP/6-31G* calculations in the same black-box sense at essentially no increase in computational cost. The energy corrections are made available by a Web service (http://www.thch.uni-bonn.de/tc/gcpd3) and by freely available software.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available