4.7 Article

Synthetic Procedure for N-Fmoc Amino Acyl-N-Sulfanylethylaniline Linker as Crypto-Peptide Thioester Precursor with Application to Native Chemical Ligation

Journal

JOURNAL OF ORGANIC CHEMISTRY
Volume 77, Issue 16, Pages 6948-6958

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jo3011107

Keywords

-

Funding

  1. KAKENHI
  2. Takeda Science Foundation
  3. Yoshida Scholarship Foundation
  4. Japan Society for the Promotion of Science
  5. Grants-in-Aid for Scientific Research [24102521, 12J08863, 24590010, 23390026, 24390026, 23659055] Funding Source: KAKEN

Ask authors/readers for more resources

N-Sulfanylethylanilide (SEAlide) peptides 1, obtainable using Fmoc-based solid-phase peptide synthesis (Fmoc SPPS), function as crypto-thioesters in native chemical ligation (NCL), yielding a wide variety of peptides/proteins. Their acylating potential with N-terminal cysteinyl peptides 2 can be tuned by the presence or absence of phosphate salts, leading to one-pot/multifragment ligation, operating under kinetically controlled conditions. SEAlide peptides have already been shown to be promising for use in protein synthesis; however, a widely applicable method for the synthesis of N-Fmoc amino acyl-N-sulfanylethylaniline linkers 4, required for the preparation of SEAlide peptides, is unavailable. The present study addresses the development of efficient condensation protocols of 20 naturally occurring amino acid derivatives to the N-sulfanylethylaniline linker 5. N-Fmoc amino acyl aniline linkers 4 of practical use in NCL chemistry, except in the case of the proline- or aspartic acid-containing linker, were successfully synthesized by coupling of POCl3- or SOCl2-activated Fmoc amino acid derivatives with sodium anilide species 6, without accompanying racemization and loss of side-chain protection. Furthermore, SEAlide peptides 7 possessing various C-terminal amino acids (Gly, His, Phe, Ala, Asn, Ser, Glu, and Val) were shown to be of practical use in NCL chemistry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available