4.7 Article

A Multiproduct Terpene Synthase from Medicago truncatula Generates Cadalane Sesquiterpenes via Two Different Mechanisms

Journal

JOURNAL OF ORGANIC CHEMISTRY
Volume 75, Issue 16, Pages 5590-5600

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jo100917c

Keywords

-

Funding

  1. Max Planck Society

Ask authors/readers for more resources

Terpene synthases are responsible for a large diversity of terpene carbon skeletons found in nature. The multiproduct sesquiterpene synthase MtTPS5 isolated from Medicago truncatula produces 27 products from farnesyl diphosphate (1, MP). In this paper, we report the reaction steps involved in the formation of these products using incubation experiments with deuterium-containing substrates; we determined the absolute configuration of individual products to establish the stereochemical course of the reaction cascade and the initial conformation of the cycling substrate. Additional labeling experiments conducted with deuterium oxide showed that cadalane sesquiterpenes are mainly produced via the protonation of the neutral intermediate germacrene D (5). These findings provide an alternative route to the general accepted pathway via nerolidyl diphosphate (2, NDP) en route to sesquiterpenes with a cadalane skeleton. Mutational analysis of the enzyme demonstrated that a tyrosine residue is important for the protonation process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available