4.7 Article

Tailoring a bacteriochlorin building block with cationic, amphipathic, or lipophilic substituents

Journal

JOURNAL OF ORGANIC CHEMISTRY
Volume 73, Issue 15, Pages 5806-5820

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jo800736c

Keywords

-

Ask authors/readers for more resources

Bacteriochlorins are attractive candidates for photodynamic therapy (PDT) of diverse medical indications owing to their strong absorption in the near-infrared (NIR) region, but their use has been stymied by lack of access to stable, synthetically malleable molecules. To overcome these limitations, a synthetic free base 3,13-dibromobacteriochlorin (BC-(BrBr13)-Br-3) has been exploited as a building block in the synthesis of diverse bacteriochlorins via Pd-mediated coupling reactions (Sonogashira, Suzuki, and reductive carbonylation). Each bacteriochlorin is stable to adventitious dehydrogenation by virtue of the presence of a geminal dimethyl group in each pyrroline ring. The target bacteriochlorins bear cationic, lipophilic, or amphipathic substituents at the 3- and 13- (beta-pyrrolic) positions. A dicarboxybacteriochlorin was converted to amide derivatives via the intermediate diacid chloride. A diformylbacteriochlorin was subjected to reductive amination to give aminomethyl derivatives. A set of 3,5-disubstituted aryl groups bearing lipophilic or amphipathic groups was introduced via Suzuki coupling. Altogether 22 free base bacteriochlorins have been prepared. Eight aminoalkylbacteriochlorins were quatemized with methyl iodide at two or four amine sites per molecule, which resulted in water solubility. Each bacteriochlorin exhibits a Q, absorption band in the range of 720-772 nm. The ability to introduce a wide variety of peripheral functional groups makes these bacteriochlorins attractive candidates for diverse applications in photomedicine including PDT in the NIR region.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available