4.6 Article

Beyond-mean-field study of a binary bosonic mixture in a state-dependent honeycomb lattice

Journal

PHYSICAL REVIEW A
Volume 91, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.91.043639

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft [SFB 925]
  2. Studienstiftung des deutschen Volkes

Ask authors/readers for more resources

We investigate a binary mixture of bosonic atoms loaded into a state-dependent honeycomb lattice. For this system, the emergence of a so-called twisted-superfluid ground state was experimentally observed in Soltan-Panahi et al. [Nat. Phys. 8, 71 ( 2012)]. Theoretically, the origin of this effect is not understood. We perform numerical simulations of an extended single-band Bose-Hubbard model adapted to the experimental parameters employing the multilayer multiconfiguration time-dependent Hartree method for Bosons. Our results confirm the overall applicability of mean-field theory in the relevant parameter range, within the extended single-band Bose-Hubbard model. Beyond this, we provide a detailed analysis of correlation effects correcting the mean-field result. These have the potential to induce asymmetries in single shot time-of-flight measurements, but we find no indication of the patterns characteristic of the twisted superfluid. We comment on the restrictions of our model and possible extensions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available