4.3 Article

Lipase-Catalyzed Synthesis of Ascorbyl Oleate in Acetone: Optimization of Reaction Conditions and Lipase Reusability

Journal

JOURNAL OF OLEO SCIENCE
Volume 62, Issue 8, Pages 591-603

Publisher

JAPAN OIL CHEMISTS SOC
DOI: 10.5650/jos.62.591

Keywords

Candida antarctica lipase B; vitamin C; oleic acid; optimization; ascorbyl oleate

Funding

  1. Serbian Ministry of Education, Science, and Technological Development [III 46010]

Ask authors/readers for more resources

Lipase-catalyzed ascorbyl oleate synthesis is eco-friendly and selective way of production of liposoluble biocompatible antioxidants, but still not present on an industrial level due to the high biocatalyst costs. In this study, response surface methodology was applied in order to estimate influence of individual experimental factors, identify interactions among them, and to determine optimum conditions for enzymatic synthesis of ascorbyl oleate in acetone, in terms of limiting substrate conversion, product yield, and yield per mass of consumed enzyme. As a biocatalyst, commercial immobilized preparation of lipase B from Candida antarctica, Novozym 435, was used. In order to develop cost-effective process, at reaction conditions at which maximum amount of product per mass of biocatalyst was produced (60 degrees C, 0.018 % (v/v) of water, 0.135 M of vitamin C, substrates molar ratio 1:8, and 0.2 % (w/v) of lipase), possibilities for further increase of ester yield were investigated. Addition of molecular sieves at 4th hour of reaction enabled increase of yield from 16.7 mmol g(-1) to 19.3 mmol g(-1). Operational stability study revealed that after ten reaction cycles enzyme retained 48 % of its initial activity. Optimized synthesis with well-timed molecular sieves addition and repeated use of lipase provided production of 153 mmol per gram of enzyme. Further improvement of productivity was achieved using procedure for the enzyme reactivation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available