4.3 Article Proceedings Paper

Wave Load and Structural Analysis for a Jack-Up Platform in Freak Waves

Publisher

ASME
DOI: 10.1115/1.2948952

Keywords

computational fluid dynamics; deformation; drilling; drilling machines; finite element analysis; hydrodynamics; impact (mechanical); Navier-Stokes equations; ocean waves; structural engineering; two-phase flow

Ask authors/readers for more resources

This paper analyzed the effects of freak waves on a mobile jack-up drilling platform stationed in exposed waters of the North Sea. Under freak wave conditions, highly nonlinear effects, such as wave run-up on platform legs and impact-related wave loads on the hull, had to be considered. Traditional methods based on the Morison formula needed to be critically examined to accurately predict these loads. Our analysis was based on the use of advanced computational fluid dynamics techniques. The code used here solves the Reynolds-averaged Navier-Stokes equations and relies on the interface-capturing technique of the volume-of-fluid type. It computed the two-phase flow of water and air to describe the physics associated with complex free-surface shapes with breaking waves and air trapping, hydrodynamic phenomena that had to be considered to yield reliable predictions. Lastly, the finite element method was used to apply the wave-induced loads onto a comprehensive finite element structural model of the platform, yielding deformations and stresses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available