4.6 Article

Hidden photoinduced reactivity of the blue fluorescent protein mKalama1

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 17, Issue 19, Pages 12472-12485

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5cp00887e

Keywords

-

Funding

  1. U.S. National Science Foundation [CHE-1213047, CHE-1465036]
  2. U.S. National Institutes of Health [R21EB009976-01, HHSN26120080001E]
  3. Intramural Research Program of the NIH
  4. U.S. National Cancer Institute, Center for Cancer Research
  5. Academy of Finland
  6. Sigrid Juselius Foundation
  7. Biocenter Finland
  8. Biocentrum Helsinki
  9. Russian Foundation for Basic Research (RFBR) [14-03-00887]
  10. Marie Curie FP7 CIG Grant
  11. Division Of Chemistry
  12. Direct For Mathematical & Physical Scien [1213047] Funding Source: National Science Foundation

Ask authors/readers for more resources

Understanding the photoinduced dynamics of fluorescent proteins is essential for their applications in bioimaging. Despite numerous studies on the ultrafast dynamics, the delayed response of these proteins, which often results in population of kinetically trapped dark states of various origins, is largely unexplored. Here, by using transient absorption spectroscopy spanning the time scale from picoseconds to seconds, we reveal a hidden reactivity of the bright blue-light emitting protein mKalama1 previously thought to be inert. This protein shows no excited-state proton transfer during its nanosecond excited-state lifetime; however, its tyrosine-based chromophore undergoes deprotonation coupled to non-radiative electronic relaxation. Such deprotonation causes distinct optical absorption changes in the broad UV-to-NIR spectral range (ca. 300-800 nm); the disappearance of the transient absorption signal has a complex nature and spans the whole microsecond-to-second time scale. The mechanisms underlying the relaxation kinetics are disclosed based on the X-ray structural analysis of mKalama1 and the high-level electronic structure calculations of proposed intermediates in the photocycle. We conclude that the non-radiative excited-state decay includes two major branches: internal conversion coupled to intraprotein proton transfer, where a conserved residue E222 serves as the proton acceptor; and ionization induced by two consecutive resonant absorption events, followed by deprotonation of the chromophore radical cation to bulk solvent through a novel water-mediated proton-wire pathway. Our findings open up new perspectives on the dynamics of fluorescent proteins as tracked by its optical transient absorption in the time domain extending up to seconds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available