4.7 Article

Extra virgin olive oil phenols down-regulate lipid synthesis in primary-cultured rat-hepatocytes

Journal

JOURNAL OF NUTRITIONAL BIOCHEMISTRY
Volume 25, Issue 7, Pages 683-691

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jnutbio.2014.01.009

Keywords

Acetyl-CoA carboxylase; AMP-activated protein kinase; Extra virgin olive oil; Lipid synthesis; Phenols; Rat-hepatocytes

Funding

  1. Apulia Region (Italy)
  2. POR Strategic Projects [CIP PS_101]

Ask authors/readers for more resources

Hydroxytyrosol, tyrosol, and oleuropein, the main phenols present in extra virgin olive oil, have been reported to exert several biochemical and pharmacological effects. Here, we investigated the short-term effects of these compounds on lipid synthesis in primary-cultured rat-liver cells. Hydroxytyrosol, tyrosol and oleuropein inhibited both de novo fatty acid and cholesterol syntheses without an effect on cell viability. The inhibitory effect of individual compounds was already evident within 2 h of 25 mu M phenol addition to the hepatocytes. The degree of cholesterogenesis reduction was similar for all phenol treatments (-25/30%), while fatty acid synthesis showed the following order of inhibition: hydroxytyrosol (-49%) = oleuropein (-48%) > tyrosol (-30%). A phenol-induced reduction of triglyceride synthesis was also detected. To clarify the lipid-lowering mechanism of these compounds, their influence on the activity of key enzymes of fatty acid biosynthesis (acetyl-CoA carboxylase and fatty acid synthase), triglyceride synthesis (diacylglycerol acyltransferase) and cholesterogenesis (3-hydroxy-3-methyl-glutaryl-00A reductase) was investigated in situ by using digitonin-permeabilized hepatocytes. Acetyl-CoA carboxylase, diacylglycerol acyltransferase and 3-hydroxy-3-methyl-glutaryl-00A reductase activities were reduced after 2 h of 25 mu M phenol treatment. No change in fatty acid synthase activity was observed. Acetyl-CoA carboxylase inhibition (hydroxytyrosol, -41%, = oleuropein, -38%, > tyrosol, -17%) appears to be mediated by phosphorylation of AMP-activated protein kinase. These findings suggest that a decrease in hepatic lipid synthesis may represent a potential mechanism underlying the reported hypolipidemic effect of phenols of extra virgin olive oil. (c) 2014 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available