4.7 Review

Mevalonate-suppressive dietary isoprenoids for bone health

Journal

JOURNAL OF NUTRITIONAL BIOCHEMISTRY
Volume 23, Issue 12, Pages 1543-1551

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jnutbio.2012.07.007

Keywords

Mevalonate; Isoprenoid; Tocotrienol; HMG CoA reductase; Osteoclast; Osteoblast

Funding

  1. Agriculture and Food Research Initiative from the USDA National Institute for Food and Agriculture [2009-02941]
  2. Texas Department of Agriculture Food and Fiber Research Program
  3. Texas Woman's University Research Enhancement Program

Ask authors/readers for more resources

Osteoclastogenesis and osteoblastogenesis, the balancing acts for optimal bone health, are under the regulation of small guanosine triphosphate-binding proteins (GTPases) including Ras, Rac, Rho and Rab. The activities of GTPases require post-translational modification with mevalonate-derived prenyl pyrophosphates. Mevalonate deprivation induced by competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase (e.g., statins) prevents the activation of GTPases, suppresses the expression of the receptor for activation of nuclear factor kappa B (NF kappa B) ligand (RANKL) and activation of NF kappa B and, consequently, inhibits osteoclast differentiation and induces osteoclast apoptosis. In contrast, statin-mediated inactivation of GTPases enhances alkaline phosphatase activity and the expression of bone morphogenetic protein-2, vascular epithelial growth factor, and osteocalcin in osteoblasts and induces osteoblast proliferation and differentiation. Animal studies show that statins inhibit bone resorption and increase bone formation. The anabolic effect of statins and other mevalonate pathway-suppressive pharmaceuticals resembles the anti-osteoclastogenic and bone-protective activities conferred by dietary isoprenoids, secondary products of plant mevalonate metabolism. The tocotrienols, vitamin E molecules with HMG CoA reductase-suppressive activity, induce mevalonate deprivation and concomitantly suppress the expression of RANKL and cyclooxygenase-2, the production of prostaglandin E2 and the activation of NF kappa B. Accordingly, tocotrienols inhibit osteoclast differentiation and induce osteoclast apoptosis. impacts reminiscent of those of statins. In vivo studies confirm the bone protective activity of tocotrienols at nontoxic doses. Blends of tocotrienols, statins and isoprenoids widely found in fruits, vegetables, grains, herbs, spices, and essential oils may synergistically suppress osteoclastogenesis while promoting osteoblastogenesis, offering a novel approach to bone health that warrants clinical studies. (C) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available