4.6 Article

Efficient intersystem crossing using singly halogenated carbomethoxyphenyl porphyrins measured using delayed fluorescence, chemical quenching, and singlet oxygen emission

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 17, Issue 43, Pages 29090-29096

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5cp04359j

Keywords

-

Funding

  1. Department of Chemistry at the University of North Carolina at Charlotte, Nanoscale Science PhD. program
  2. UNC Charlotte Faculty Research Grant [111726]
  3. NSF - REU
  4. ASSURE program of the DoD [CHE 1156867]

Ask authors/readers for more resources

Sensitizers with high triplet quantum yields are useful for generating photovoltaics, photocatalysts and photodynamic therapy agents with increased efficiency. In this study, the heavy atom effect was used to optimize the triplet and singlet oxygen quantum yields of 5,10,15,20-tetrakis(4-carbomethoxyphenyl)-porphyrin (1-TCM4PP). The triplet quantum yields, determined using delayed fluorescence, was calculated as 0.35 for 1-TCM4PP, 0.75 for 5,10,15-tris(4-carbomethoxyphenyl)-20-(4-bromophenyl) porphyrin (2-TBCM3PP) and 0.88 for 5,10,15-tris(4-carbomethoxyphenyl)-20-(4-iodophenyl) porphyrin (3-TCM3IPP). Chemical quenching of 1,3-diphenylisobenzofuran and singlet oxygen emission studies rendered an average singlet oxygen quantum yield of 0.51, 0.75, and 0.90 for TCM4PP, TBCM3PP and TCM3IPP respectively. These photophysical properties indicate that a single halogen atom is capable of transforming TCM4PP into a sensitizer with strong triplet character. This is useful for generating singlet oxygen for photodynamic therapy, creating a long lasting reactive species for catalysis and for extending diffusion lengths in photovoltaic applications while retaining three molecular modification points for further functionalization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available