4.6 Article

Prenatal Choline Supplementation Ameliorates the Long-Term Neurobehavioral Effects of Fetal-Neonatal Iron Deficiency in Rats

Journal

JOURNAL OF NUTRITION
Volume 144, Issue 11, Pages 1858-1865

Publisher

OXFORD UNIV PRESS
DOI: 10.3945/jn.114.198739

Keywords

-

Funding

  1. NIH grant [R01 HD029421-18]

Ask authors/readers for more resources

Background: Gestational iron deficiency in humans and rodents produces long-term deficits in cognitive and socioemotional function and alters expression of plasticity genes in the hippocampus that persist despite iron treatment. Prenatal choline supplementation improves cognitive function in other rodent models of developmental insults. Objective: The objective of this study was to determine whether prenatal choline supplementation prevents the long-term effects of fetal-neonatal iron deficiency on cognitive and social behaviors and hippocampal gene expression. Methods: Pregnant rat dams were administered an iron-deficient (2-6 g/kg iron) or iron-sufficient (IS) (200 g/kg iron) diet from embryonic day (E) 3 to postnatal day (P) 7 with or without choline supplementation (5 g/kg choline chloride, E 11-18). Novel object recognition (NOR) in the test vs. acquisition phase, social approach (SA), and hippocampal mRNA expression were compared at P65 in 4 male adult offspring groups: formerly iron deficient (FID), FID with choline supplementation (FID-C), IS, and IS with choline supplementation. Results: Relative to the intact NOR in IS rats (acquisition: 47.9%, test: 60.2%, P < 0.005), FID adult rats had impaired recognition memory at the 6-h delay (acquisition: 51.4%, test: 55.1%, NS), accompanied by a 15% reduction in hippocampal expression of brain-derived neurotrophic factor (Bdnt) (P < 0.051 and myelin basic protein (Mbp) (P < 0.05). Prenatal choline supplementation in FID rats restored NOR (acquisition: 48.8%, test: 64.4%, P < 0.0005) and increased hippocampal gene expression (FID-C vs. FID group: Bdnf, Mbp, P < 0.01). SA was also reduced in FID rats (P < 0.05 vs. IS rats) but was only marginally improved by prenatal choline supplementation. Conclusions: Deficits in recognition memory, but not social behavior, resulting from gestational iron deficiency are attenuated by prenatal choline supplementation, potentially through preservation of hippocampal Bdnf and Mbp expression. Prenatal choline supplementation may be a promising adjunct treatment for fetal-neonatal iron deficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available