4.6 Article

An (n-3) polyunsaturated fatty acid-deficient diet disturbs daily locomotor activity, melatonin rhythm, and striatal dopamine in Syrian hamsters

Journal

JOURNAL OF NUTRITION
Volume 138, Issue 9, Pages 1719-1724

Publisher

AMER SOC NUTRITION-ASN
DOI: 10.1093/jn/138.9.1719

Keywords

-

Funding

  1. l'Institut National de la recherche Agronomique (INRA)
  2. Groupe Lipides Nutrition

Ask authors/readers for more resources

Several Studies suggest that (n-3) PUFA may play a role in the regulation of cognitive functions, locomotor and exploratory activity, and affective disorders. Additionally, (n-3) PUFA affect pineal function, which is implicated in the sleep-wake rhythm. However, no studies to our knowledge have explored the role of PUFA on the circadian system. We investigated the effect of air (n-3) PUFA-deficient diet on locomotor and pineal melatonin rhythms in Syrian hamsters used as model species in circadian rhythm research. To assess the possible relationship between voluntary wheel running activity and dopaminergic neurotransmission, we also measured endogenous monoamine concentrations in the striatum. Two-month-old male hamsters, fed either an (n-3) PUFA-deficient or an (n-3) PUFA-adequate diet, were housed individually in cages equipped with run wheels. At 3 mo, cerebral Structures were extracted for biochemical and cellular analysis. In n-3) PUFA-deficient hamsters, the induced changes in the pineal PUFA membrane phospholipid composition were associated with a reduction in the nocturnal peak level of melatonin that was 52% lower than in control hamsters (P < 0.001). The (n-3) PUFA-deficient hamsters also had higher diurnal (P< 0.01) and nocturnal (P 0,001) locomotor activity than the control hamsters, in parallel with activation of striatal dopaminergic function (P< 0.05). The (n-3) PUFA-deficient hamsters exhibited several symptoms: chronic locomotor hyperactivity, disturbance in melatonin rhythm, and striatal hyperdopaminergia. We suggest that an (n-3) PUFA-deficient diet lessens the melatonin rhythm, weakens endogenous functioning of the circadian clock, and plays a role in nocturnal sleep disturbances as described in attention deficit/hyperactivity disorder.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available