4.6 Article

Synthesis of branched Pd nanocrystals with tunable structures, their growth mechanism, and enhanced electrocatalytic properties

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 17, Issue 47, Pages 31956-31965

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5cp05531h

Keywords

-

Funding

  1. National Natural Science Foundation of China [21371097, 21071079]
  2. Research Fund of State Key Laboratory of Materials-Oriented Chemical Engineering [2012 (ZK201209)]

Ask authors/readers for more resources

Branched Pd nanocrystals (NCs) with tunable architectures are synthesized in high yields (>95%) by simply adjusting the concentration of H2PdCl4 in the presence of fixed amounts of cetyltrimethylammonium bromide (CTAB), L-ascorbic acid (L-AA), and CuBr2- that is produced by reducing CuBr2 with L-AA. The as-synthesized branched Pd NCs have long, straight branches with thin diameters. At the same time, the growth process of the branched Pd NCs is monitored, which provides mechanistic insights for the branching growth of Pd NCs. It is identified that a high concentration of CTAB combined with an appropriate amount of CuBr2- species, acting as an in situ cooperatively organized template, is a decisive factor for the anisotropic growth of the branched Pd nanostructures during aqueous-phase reduction of the Pd precursor, using L-AA as a reducing agent. The electrocatalytic activities of the branched Pd NCs were tested. The branched Pd NCs are found to be an excellent electrocatalyst for the methanol oxidation reaction (MOR) largely due to the size and morphological effects of the branched structures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available