4.6 Article

A hybrid density functional theory study of the anion distribution and applied electronic properties of the LaTiO2N semiconductor photocatalyst

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 17, Issue 29, Pages 19631-19636

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5cp02606g

Keywords

-

Funding

  1. National Basic Research Program of China [2013CB632404]

Ask authors/readers for more resources

Although the crystallographic space group has been determined, detailed first principles calculations of the LaTiO2N semiconductor photocatalyst crystal have not been performed because of the nitrogen/oxygen sosoloid-like anion distribution. In this study, based on the Heyd-Scuseria-Ernzerhof method and experimental anion content, we present the possibility of determining detailed information about the LaTiO2N sosoloid-like anion distribution by dividing the anions into possible primitive cells. The detailed information about the anion distribution based on the characteristics of the energetically acceptable primitive cell structures suggests that the LaTiO2N structure is composed of aperiodic stacks of six building-block primitive cells, the non-vacancy primitive cells are located at the surface as effective photoreaction sites, and vacancy structures are located in the bulk. The surface oxide-rich structures increase the near-surface conduction band minimum rise and strengthen photoelectron transport to the bulk, while the content of the bulk vacancy structures should be balanced because of being out of photoreactions. This study is expected to provide a different perspective to understanding the LaTiO2N sosoloid-like anion distribution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available