4.7 Article

Reduced 64Cu Uptake and Tumor Growth Inhibition by Knockdown of Human Copper Transporter 1 in Xenograft Mouse Model of Prostate Cancer

Journal

JOURNAL OF NUCLEAR MEDICINE
Volume 55, Issue 4, Pages 622-628

Publisher

SOC NUCLEAR MEDICINE INC
DOI: 10.2967/jnumed.113.126979

Keywords

prostate cancer; copper metabolism; human copper; transporter 1; PET/CT; Cu-64-chloride

Funding

  1. NCI NIH HHS [P30 CA142543, R24 CA86307, R24 CA086307] Funding Source: Medline
  2. NIBIB NIH HHS [R21EB005331-01A2, R21 EB005331] Funding Source: Medline

Ask authors/readers for more resources

Copper is an element required for cell proliferation and angiogenesis. Human prostate cancer xenografts with increased Cu-64 radioactivity were visualized previously by PET using (CuCl2)-Cu-64 as a radiotracer ((CuCl2)-Cu-64 PET). This study aimed to determine whether the increased tumor 64Cu radioactivity was due to increased cellular uptake of 64Cu mediated by human copper transporter 1 (hCtr1) or simply due to nonspecific binding of ionic 64CuCl2 to tumor tissue. In addition, the functional role of hCtr1 in proliferation of prostate cancer cells and tumor growth was also assessed. Methods: A lentiviral vector encoding short-hairpin RNA specific for hCtr1 (Lenti-hCtr1-shRNA) was constructed for RNA interference-mediated knockdown of hCtr1 expression in prostate cancer cells. The degree of hCtr1 knockdown was determined by Western blot, and the effect of hCtr1 knockdown on copper uptake and proliferation were examined in vitro by cellular 64Cu uptake and cell proliferation assays. The effects of hCtr1 knockdown on tumor uptake of 64Cu were determined by PET quantification and tissue radioactivity assay. The effects of hCtr1 knockdown on tumor growth were assessed by PET/CT and tumor size measurement with a caliper. Results: RNA interference-mediated knockdown of hCtr1 was associated with the reduced cellular uptake of 64Cu and the suppression of prostate cancer cell proliferation in vitro. At 24 h after intravenous injection of the tracer 64CuCl2, the 64Cu uptake by the tumors with knockdown of hCtr1 (4.02 +/- 0.31 percentage injected dose per gram [% ID/g] in Lenti-hCtr1-shRNA-PC-3 and 2.30 +/- 0.59 % ID/g in Lenti- hCtr1- shRNA- DU- 145) was significantly lower than the 64Cu uptake by the control tumors without knockdown of hCtr1 (7.21 +/- 1.48% ID/g in Lenti-SCR-shRNA-PC-3 and 5.57 +/- 1.20% ID/g in Lenti-SCR-shRNA-DU-145, P, 0.001) by PET quantification. Moreover, the volumes of prostate cancer xenograft tumors with knockdown of hCtr1 (179 +/- 111 mm(3) for Lenti-hCtr1-shRNAPC- 3 or 39 +/- 22 mm(3) for Lenti-hCtr1-shRNA-DU-145) were significantly smaller than those without knockdown of hCtr1 (536 +/- 191 mm(3) for Lenti-SCR-shRNA-PC-3 or 208 +/- 104 mm(3) for Lenti-SCR-shRNA-DU-145, P, 0.01). Conclusion: Overall, data indicated that hCtr1 is a promising theranostic target, which can be further developed for metabolic imaging of prostate cancer using (CuCl2)-Cu-64 PET/CT and personalized cancer therapy targeting copper metabolism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available