4.7 Article

Novel 18F-Labeled Arylquinoline Derivatives for Noninvasive Imaging of Tau Pathology in Alzheimer Disease

Journal

JOURNAL OF NUCLEAR MEDICINE
Volume 54, Issue 8, Pages 1420-1427

Publisher

SOC NUCLEAR MEDICINE INC
DOI: 10.2967/jnumed.112.117341

Keywords

Alzheimer disease; tau; neurofibrillary tangles; positron emission tomography; molecular imaging

Funding

  1. GE Healthcare
  2. Industrial Technology Research Grant Program of the NEDO in Japan [09E51025a]
  3. Health and Labor Sciences Research grants from the Ministry of Health, Labor, and Welfare of Japan
  4. Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan [23390297]
  5. Japan Advanced Molecular Imaging Program (J-AMP) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan
  6. Grants-in-Aid for Scientific Research [23390297, 24659255, 25670524] Funding Source: KAKEN

Ask authors/readers for more resources

Neurofibrillary tangles in Alzheimer disease (AD) brains are composed of the microtubule-associated protein tau. Noninvasive monitoring of tau protein aggregates in the living brain will provide useful information regarding tau pathophysiology in AD. However, no PET probes are currently available for selective detection of tau pathology in AD. We have previously reported F-18-labeled THK-523 (F-18-6-(2-fluoroethoxy)-2-(4-aminophenyl)quinoline) as a tau imaging radiotracer candidate for PET. After compound optimization, we developed novel F-18-labeled arylquinoline derivatives, F-18-THK-5105 and F-18-THK-5117, for use as tau imaging PET tracers. Methods: F-18-labeled compounds were prepared from the corresponding tosylated precursors. The binding affinity of compounds to synthetic tau aggregates and tau-rich AD brain homogenates was determined by saturation and competition binding assays. The binding selectivity of compounds to tau pathology was evaluated by autoradiography of AD brain sections. The pharmacokinetics of compounds were assessed in biodistribution studies in normal mice. A 14-d toxicity study with intravenous administration of compounds was performed using rats and mice. Results: In vitro binding assays demonstrated higher binding affinity of THK-5105 and THK-5117 than THK-523 to tau protein aggregates and tau-rich AD brain homogenates. Autoradiographic analyses of AD brain sections showed that these radiotracers preferentially bound to neurofibrillary tangles and neuropil threads, which colocalized with Gallyas-positive and immunoreactive tau protein deposits. The distribution of this radiotracer binding in AD brain sections was completely different from that of C-11-Pittsburgh compound B, showing preferential binding to amyloid plaques. Furthermore, these derivatives demonstrated abundant initial brain uptake and faster clearance in normal mice than F-18-THK-523 and other reported F-18-labeled radiotracers. THK-5105 and THK-5117 showed no toxic effects related to the administration of these compounds in mice and rats and no significant binding for various neuroreceptors, ion channels, and transporters at 1-mu M concentrations. Conclusion: (18)-F-labeled THK-5105 and THK-5117 are promising candidates as PET tau imaging radiotracers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available