4.7 Article

Stress corrosion cracking of low-alloy reactor pressure vessel steels under boiling water reactor conditions

Journal

JOURNAL OF NUCLEAR MATERIALS
Volume 372, Issue 1, Pages 114-131

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jnucmat.2007.03.048

Keywords

-

Ask authors/readers for more resources

The stress corrosion cracking (SCC) behaviour of different reactor pressure vessel (RPV) steels and weld filler/heat-affected zone materials was characterized under simulated boiling water reactor (BWR) normal water (NWC) and hydrogen water chemistry (HWC) conditions by periodical partial unloading, constant and ripple load tests with pre-cracked fracture mechanics specimens. The experiments were performed in oxygenated or hydrogenated high-purity or sulphate/chloride containing water at temperatures from 150 to 288 degrees C. In good agreement with field experience, these investigations revealed a very low susceptibility to SCC crack growth and small crack growth rates (<0.6 mm/year) under most BWR/NWC and material conditions. Critical water chemistry, loading and material conditions, which can result in sustained and fast SCC well above the 'BWRVIP-60 SCC disposition lines' were identified, but many of them generally appeared atypical for current optimized BWR power operation practice or modern RPVs. Application of HWC always resulted in a significant reduction of SCC crack growth rates by more than one order of magnitude under these critical system conditions and growth rates dropped well below the 'BWRVIP-60 SCC disposition lines'. (c) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available