4.4 Article

Influence of yield stress on the fluid droplet impact control

Journal

JOURNAL OF NON-NEWTONIAN FLUID MECHANICS
Volume 165, Issue 11-12, Pages 596-606

Publisher

ELSEVIER
DOI: 10.1016/j.jnnfm.2010.02.020

Keywords

Yield stress fluids; Drop; Impact; Spreading

Categories

Funding

  1. Grenoble Institute of Technology

Ask authors/readers for more resources

The impact and the spreading of a drop of the yield stress fluid on a solid surface have been experimentally investigated. A yield stress fluid chosen as a model fluid can shed some light on the manner in which it is possible to control the impacted drop's profile. Several gels based on polymer concentration were prepared to obtain different levels of yield stress. Their shear theological behaviours were characterized and their flow behaviours were modeled using Herschell-Bulkley equation. Droplets were impacted in a wide range of velocities upon a dry and smooth polymethylmetacrylate substrate. Their dynamics on the impacted surface were captured using a high-speed camera. The spreading and recoil of drops are studied and their behaviour was compared to that of a Newtonian fluid at each impact velocity. Influence of the yield stress level and intensity of inertia on the transient and final stages of drops impact were studied. It was shown how the increasing yield stress dictates the drop formation and also led to an emphasis of the inhibition of spreading and the weakening of retraction in the case of high inertial impacts. It was also noticed that the magnitude of the gravitational subsidence observed for the low impact velocities, is governed by the initial non-spherical shape of droplets. Dimensionless numbers were defined in the case of yield stress fluids, allowing us to compare the effects of forces present in the process and better understand the phenomena observed. Wall slip of gels on the PMMA substrate was characterized. Its influence on the drop spreading has been discussed. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available