4.5 Article

Molecular mechanisms of Fas-mediated cell death in oligodendrocytes

Journal

JOURNAL OF NEUROTRAUMA
Volume 25, Issue 5, Pages 411-426

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/neu.2007.0436

Keywords

apoptosis; caspase; cytochrome c; Fas; oligodendrocytes

Ask authors/readers for more resources

Oligodendrocyte cell death is a significant component of the secondary damage following spinal cord injury (SCI) and other neurodegenerative disorders. However, the mechanisms underlying oligodendroglial apoptotic cell death and the potential relationship to Fas receptor (FasR) activation require further clarification. Here, using MO3.13, a human oligodendroglial cell line, we show clear evidence of apoptosis upon exposure to soluble Fas ligand (sFasL). Apoptosis was linked to caspase-8, -9, and -3 activity and resulted in DNA fragmentation detected by deoxynucleotide transferase dUTP nick end-labeling (TUNEL). Dissipation of mitochondrial membrane potential (Delta Psi m) was an early event and temporally coincided with mitochondrial outer membrane permeability (MOMP), demonstrated by the presence of cytochrome c and apoptosis inducing factor (AIF) in cytosolic fractions. Pretreatment with 100 mu M of the caspase inhibitor zVAD-fmk prior to sFasL exposure reduced caspase activation, the dissipation of Delta Psi m, MOMP, and apoptotic cell death. These data provide clear evidence that Fas activation induces apoptosis in oligodendrocytes signaling through intrinsic and extrinsic events. Moreover, we provide evidence for the first time that AIF may play a role in caspase-independent apoptotic execution following Fas activation of oligodendrocytes. These data also add to an emerging body of evidence, which strongly implicates Fas-mediated apoptosis of oligodendrocytes as a potential mediator in the pathobiology of a variety of neurological disorders, including SCI.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available