4.6 Article

Attenuation of neurological injury with early baicalein treatment following sub arachnoid hemorrhage in rats Laboratory investigation

Journal

JOURNAL OF NEUROSURGERY
Volume 119, Issue 4, Pages 1028-1037

Publisher

AMER ASSOC NEUROLOGICAL SURGEONS
DOI: 10.3171/2013.4.JNS121919

Keywords

subarachnoid hemorrhage; neurological injury; baicalein lutamate; oxidative stress; vascular disorders

Funding

  1. National Science Council, Taiwan, Republic of China [NSC 96-2314-B-016-013]

Ask authors/readers for more resources

Object. Baicalein has been shown to offer neuroprotection in the ischemic brain, but its effect in subarachnoid hemorrhage (SAH) is unknown. The authors used a double-hemorrhage model to study the role of early baicalein treatment in SAH. Methods. Subarachnoid hemorrhage was induced in male Wistar rats through a repeat injection of autologous blood at a 48-hour interval. Rats subjected or not subjected to SAH received a 30-mg/kg baicalein injection 3 hours after SAH and daily for 6 consecutive days, and results were compared with those obtained in vehicle-treated control rats. Mortality of the rats was recorded. Neurological outcome was assessed daily. Cerebrospinal fluid dialysates were collected and examined for glutamate concentrations. Cerebral vasospasm (CVS), brain water content, neuron variability, expression of glutamate transporter-1 (GLT-1), immunoreactivity of astrocyte, and level of malondialdehyde, activities of superoxide dismutase (SOD), and catalase in brain tissues content were determined on post-SAH Day 7. Results. Mortality rate, neuronal degeneration, brain water content, and CVS were decreased and neurological function improved in the baicalein-treated rats. Baicalein increased astrocyte activity and preserved GLT-1, which attenuated the glutamate surge after SAH. Baicalein also provided antioxidative stress by preserving activities of SOD and catalase and decreased malondialdehydelevel after SAH. The glutamate, body weight, neurological scores, and glial fibrillary acidic protein activity were significantly correlated. The CVS was correlated with neuronal degeneration, and GLT-1 was correlated with oxidative stress. Conclusions. Early baicalein treatment attenuated CVS and limited neurological injury following SAH. These data may indicate clinical utility for baicalein as an adjunct therapy to reduce brain injury and improve patient outcomes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available