4.5 Article

Brain energy metabolism measured by 13C magnetic resonance spectroscopy in vivo upon infusion of [3-13C]lactate

Journal

JOURNAL OF NEUROSCIENCE RESEARCH
Volume 93, Issue 7, Pages 1009-1018

Publisher

WILEY
DOI: 10.1002/jnr.23531

Keywords

lactate; C-13 MRS; brain; metabolism

Categories

Funding

  1. Swiss National Science Foundation [131087, 148250]
  2. Centre d'Imagerie BioMedicale of the UNIL, UNIGE, HUG, CHUV, EPFL
  3. Leenaards Foundation
  4. Jeantet Foundation

Ask authors/readers for more resources

The brain uses lactate produced by glycolysis as an energy source. How lactate originated from the blood stream is used to fuel brain metabolism is not clear. The current study measures brain metabolic fluxes and estimates the amount of pyruvate that becomes labeled in glial and neuronal compartments upon infusion of [3-C-13]lactate. For that, labeling incorporation into carbons of glutamate and glutamine was measured by C-13 magnetic resonance spectroscopy at 14.1 T and analyzed with a two-compartment model of brain metabolism to estimate rates of mitochondrial oxidation, glial pyruvate carboxylation, and the glutamate-glutamine cycle as well as pyruvate fractional enrichments. Extracerebral lactate at supraphysiological levels contributes at least two-fold more to replenish the neuronal than the glial pyruvate pools. The rates of mitochondrial oxidation in neurons and glia, pyruvate carboxylase, and glutamate-glutamine cycles were similar to those estimated by administration of C-13-enriched glucose, the main fuel of brain energy metabolism. These results are in agreement with primary utilization of exogenous lactate in neurons rather than astrocytes. (c) 2014 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available