4.5 Article

Experimental evidence that pristanic acid disrupts mitochondrial homeostasis in brain of young rats

Journal

JOURNAL OF NEUROSCIENCE RESEARCH
Volume 90, Issue 3, Pages 597-605

Publisher

WILEY
DOI: 10.1002/jnr.22802

Keywords

pristanic acid; peroxisomal disorders; mitochondrial dysfunction; rat brain; oxygen consumption; bioenergetics

Categories

Funding

  1. CNPq
  2. PROPESq/UFRGS
  3. FAPERGS
  4. PRONEX
  5. FINEP Rede Instituto Brasileiro de Neurociencia (IBN-Net) [01.06.0842-00]
  6. Instituto Nacional de Ciencia e Tecnologia-Excitotoxicidade e Neuroprotecao (INCT-EN)

Ask authors/readers for more resources

Patients affected by peroxisomal disorders commonly present neurologic dysfunction and brain abnormalities, whose neuropathology is poorly understood. Given that high sustained concentrations of pristanic acid (Prist) are found in the brain of these patients, it is conceivable that this complex branched-chain fatty acid is neurotoxic. Therefore, the present work investigated the in vitro effects of Prist at similar concentrations found in plasma of affected patients with some peroxisomal disorders on important parameters of energy homeostasis, including respiratory parameters determined by oxygen consumption, membrane potential (Delta Psi m), NAD(P)H content, and swelling in mitochondrial preparations obtained from brain of young rats using glutamate plus malate or succinate as respiratory substrates. Prist markedly increased state 4 respiration and decreased state 3 respiration, the respiratory control ratio (RCR), and the ADP/O ratio with both substrates. The mitochondrial Delta Psi m and the matrix NAD(P)H content were also decreased by Prist, which was also able to provoke mitochondrial swelling. Furthermore, Prist-induced mitochondrial swelling was dependent on oxidative damage to the permeability transition pore (PTP), because cyclosporine A and the thiol-reducing agent N-acetylcysteine totally prevented mitochondrial swelling. These data suggest that Prist impairs mitochondrial homeostasis, acting as an uncoupler of oxidative phosphorylation and as a metabolic inhibitor, besides causing mitochondrial swelling probably mediated by the permeability transition pore. It is proposed that these pathomechanisms may potentially be involved in the neurological abnormalities characteristic of the peroxisomal diseases in which Prist accumulates. (c) 2011 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available