4.5 Article

Characterization of Ntera2/D1 Cells as a Model System for the Investigation of Cannabinoid Function in Human Neurons and Astrocytes

Journal

JOURNAL OF NEUROSCIENCE RESEARCH
Volume 89, Issue 10, Pages 1685-1697

Publisher

WILEY-BLACKWELL
DOI: 10.1002/jnr.22692

Keywords

cannabinoid receptor CB1; cannabinoid receptor CB2; endocannabinoids; central nervous system

Categories

Funding

  1. New Zealand Royal Society

Ask authors/readers for more resources

The limited availability and potential to culture primary human brain cells means that there is still a need for cell lines that reliably model human neurons and glial cells. The human-derived NTera2/D1 (NT2) cell line is a promising tool from which both neuronal (NT2N) and astrocytic (NT2A) cells can be derived in vitro. Here we have investigated the potential to use this cell model to investigate the endocannabinoid system in the CNS. Through immunocytochemical characterization with a range of neuronal and glial markers, we found that these cell lines differentiate into cells with immature neuronal and astrocytic phenotypes, respectively. By real-time PCR, immunocytochemistry, and functional inhibition of cAMP accumulation, the cannabinoid 1 receptors were identified only on NT2N cells, consistent with high levels of expression of this receptor in neuronal cells of the CNS. No evidence of cannabinoid 2 receptor expression was found on any of the NT2 cell types. Both the precursors and the differentiated NT2N and NT2A cells demonstrated mRNA expression for the key enzymes involved in endocannabinoid synthesis and degradation. This work establishes a cannabinergic phenotype in NT2N and NT2A cells, providing an alternative human derived renewable cell model for investigation of cannabinoid receptor function and endocannabinoid synthesis and metabolism in the CNS. (C) 2011 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available