4.5 Article

Interaction of Neurotrophin Signaling With Bcl-2 Localized to the Mitochondria and Endoplasmic Reticulum on Spiral Ganglion Neuron Survival and Neurite Growth

Journal

JOURNAL OF NEUROSCIENCE RESEARCH
Volume 88, Issue 10, Pages 2239-2251

Publisher

WILEY
DOI: 10.1002/jnr.22381

Keywords

auditory neuron; axon growth; phosphatidyl inositol-3 kinase; mitogen-activated protein kinase kinase; nerve regeneration

Categories

Funding

  1. American Otological Society
  2. NIDCD [KO8 DC006211]

Ask authors/readers for more resources

Enhanced spiral ganglion neuron (SGN) survival and regeneration of peripheral axons following deafness will likely enhance the efficacy of cochlear implants. Overexpression of Bcl-2 prevents SGN death but inhibits neurite growth. Here we assessed the consequences of Bcl-2 targeted to either the mitochondria (GFP-Bcl-2-Maob) or the endoplasmic reticulum (ER, GFP-Bcl-2-Cb5) on cultured SGN survival and neurite growth. Transfection of wild-type GFP-Bcl-2, GFP-Bcl-2-Cb5, or GFP-Bcl-2-Maob increased SGN survival, with GFP-Bcl-2-Cb5 providing the most robust response. Paradoxically, expression of GFP-Bcl-2-Maob results in SGN death in the presence of neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF), neurotrophins that independently promote SGN survival via Trk receptors. This loss of SGNs is associated with cleavage of caspase 3 and appears to be specific for neurotrophin signaling, insofar as coexpression of constitutively active mitogen-activated kinase kinase (MEK Delta EE) or phosphatidyl inositol-3 kinase (P110), but not other prosurvival stimuli (e.g., membrane depolarization), also results in the loss of SGNs expressing GFP-Bcl-2-Maob. MEKAEE and P110 promote SGN survival, whereas P110 promotes neurite growth to a greater extent than NT-3 or MEKAEE. However, wild-type GFP-Bcl-2, GFP-Bcl-2-Cb5, and GFP-Bcl-2-Maob inhibit neurite growth even in the presence of neurotrophins, MEKAEE, or P110. Historically, Bcl-2 has been thought to act primarily at the mitochondria to prevent neuronal apoptosis. Nevertheless, our data show that Bcl-2 targeted to the ER is more effective at rescuing SGNs in the absence of trophic factors. Additionally, Bcl-2 targeted to the mitochondria results in SGN death in the presence of neurotrophins. (C) 2010 Wiley-Liss, inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available