4.5 Article

Focal Adhesion Kinase (FAK): A Regulator of CNS Myelination

Journal

JOURNAL OF NEUROSCIENCE RESEARCH
Volume 87, Issue 15, Pages 3456-3464

Publisher

WILEY
DOI: 10.1002/jnr.22022

Keywords

oligodendrocyte; myelination; FAK; ECM molecules; process outgrowth

Categories

Funding

  1. NIH-NINDS [5P30NS047463]
  2. National Institute of Health
  3. National Multiple Sclerosis Society

Ask authors/readers for more resources

The formation of the myelin sheath is a crucial step during development because it enables fast and efficient propagation of signals within the limited space of the mammalian central nervous system (CNS). During the process of myelination, oligodendrocytes actively interact with the extracellular matrix (ECM). These interactions are considered crucial for proper and timely completion of the myelin sheath. However, the exact regulatory circuits involved in the signaling events that occur between the ECM and oligodendrocytes are currently not fully understood. Therefore, in the present study we investigated the role of a known integrator of cell-ECM signaling, namely, focal adhesion kinase (FAK), in CNS myelination via the use of conditional (oligodendrocyte-specific) and T inducible FAK-knockout mice (Fak(flox/flox): PLP/CreER(T) mice). When inducing FAK knockout just prior to and during active myelination of the optic nerve, we observed a significant reduction in the number of myelinated fibers on postnatal day 14. In addition, our data revealed a decreased number of primary processes extending from oligodendrocyte cell bodies at this postnatal age and on induction of FAK knockout. In contrast, myelination appeared normal on postnatal day 28. Thus, our data suggest that FAK controls the efficiency and timing of CNS myelination during its initial stages, at least in part, by regulating oligodendrocyte process outgrowth and/or remodeling. (C) 2009 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available