4.5 Article

Global Gene Expression Analysis of Cranial Neural Tubes in Embryos of Diabetic Mice

Journal

JOURNAL OF NEUROSCIENCE RESEARCH
Volume 86, Issue 16, Pages 3481-3493

Publisher

WILEY
DOI: 10.1002/jnr.21800

Keywords

brain development; malformation; gene expression; microarray; maternal diabetes; embryo

Categories

Funding

  1. National University of Singapore [B-181-000-093-101, R181-000-077-112]
  2. NUS Graduate Student Research Scholarship

Ask authors/readers for more resources

Maternal diabetes causes congenital malformations in various organs including the neural tube in fetuses. In this study, we have analyzed the differential gene expression profiling in the cranial neural tube of embryos from diabetic and control mice by using the oligonucleotide microarray. Expression patterns of genes and proteins that are differentially expressed in the cranial neural tube were further examined by the real-time reverse transcriptase-polymerase chain reaction, in situ hybridization, and immunohistochemistry. Proliferation index and apoptosis were examined by BrdU (5-bromo-2-deoxyuridine) labeling and TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling) assay, respectively. Embryos (E11.5) of diabetic pregnancies displayed distortion in neuroepithelia of the cranial neural tube. Microarray analysis revealed that a total of 390 genes exhibited more than twofold changes in expression level in the cranial neural tube of embryos from diabetic mice. Several genes involving apoptosis, proliferation, migration, and differentiation of neurons in the cranial neural tube were differentially expressed in embryos of diabetic pregnancy. In addition, maternal diabetes perturbed the development of choroid plexus and ventricular systems and reduced the production of proteins such as Ttr and Igf2 in the developing brain, indicating that these changes could impair the survival and proliferation of neuroepithelial cells and neurogenesis in embryos of diabetic mice. It is concluded that altered expression of a variety of genes involved in brain development is associated with cranial neural tube dysmorphogenesis that may subsequently contribute to intellectual impairment of the offspring of a diabetic mother. (c) 2008 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available