4.5 Article

Loss of presenilin function causes Alzheimer's disease-like neuro degeneration in the mouse

Journal

JOURNAL OF NEUROSCIENCE RESEARCH
Volume 86, Issue 7, Pages 1615-1625

Publisher

WILEY
DOI: 10.1002/jnr.21601

Keywords

Alzheimer's disease; presenilin-1; conditional knockout; mouse; aging-dependent neurodegeneration

Categories

Funding

  1. NIMH NIH HHS [MH066243] Funding Source: Medline

Ask authors/readers for more resources

Accumulating evidence has indicated that gain-of-function in P-amyloid production may be not the necessary mechanism for mutant presenilin-1 (PS1) or PS2 to cause familial Alzheimer's disease (AD). In the present article, we show that conditional knockout of PS1 from the adult stage in the forebrain of mice with the PS2 null mutation triggers robust AD-like neurodegeneration including brain shrinkage, cortical and hippocampal atrophy, ventricular enlargement, severe neuronal loss, gliosis, tau hyperphosphorylation, neurofillament tangle-like structures, and intracellular filaments. Learning and memory functions in these mice are almost completely lost. Notably, there is no beta-amyloid deposition, indicating that presenilin dysfunction can directly cause neurodegeneration without the involvement of beta-amyloid. Furthermore, neurodegeneration occurs in a progressive manner following aging, suggesting that an accumulating effect of presenilin dysfunction over time might be a pathogenic mechanism for the involvement of mutant PS1/PS2 in causing AD. These results validate a mouse model characterized by the presence of many features of AD pathology. Furthermore, the demonstration of AD-like neurodegeneration in the absence of beta-amyloid deposition challenges the long-standing beta-amyloid cascade hypothesis and encourages an open debate on the role of beta-amyloid in causing AD. Most important, our results strongly suggest that to develop gamma-secretase inhibitors for the pharmacological treatment of AD may be not a reasonable strategy because antagonism of presenilin function may worsen neurodegeneration. (c) 2008 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available