4.5 Article

Okadaic Acid Increases Autophagosomes in Rat Neurons: Implications for Alzheimer's Disease

Journal

JOURNAL OF NEUROSCIENCE RESEARCH
Volume 86, Issue 14, Pages 3230-3239

Publisher

WILEY
DOI: 10.1002/jnr.21760

Keywords

PP2A; LC3; cathepsin; 3-methyladenine; rapamycin

Categories

Ask authors/readers for more resources

Autophagosomes are accumulated in Alzheimer's disease (AD), but the regulatory pathway of autophagy in AD remains largely unknown. By using electron microscopy, Western blotting, and immunocytochemistry, here we show that autophagosomes are accumulated in rat neurons by okadaic acid (OA), a protein phosphatase-2A inhibitor known to enhance tan phosphorylation, beta-amyloid (A beta) deposition, and neuronal death, which are the pathological hallmarks of AD. Autophagy can be generally induced via several distinct pathways, such as inhibition of mTOR or activation of beclin-1. Interestingly, OA increased both mTOR and beclin-1 pathways simultaneously, which suggests that autophagy in OA-treated neurons is induced mainly via the beclin-1 pathway, and less so via mTOR inhibition. Finally, inhibition of autophagy by 3MA reduced cytotoxicity in OA-treated neurons. Our novel findings provide new insights into the pathology of and therapeutic intervention for AD. (c) 2008 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available