4.4 Article

Information content with low- vs. high-Tc SQUID arrays in MEG recordings: The case for high-TcSQUID-based MEG

Journal

JOURNAL OF NEUROSCIENCE METHODS
Volume 222, Issue -, Pages 42-46

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jneumeth.2013.10.007

Keywords

Channel capacity; Total information; High-T-c SQUID; MEG; SQUID-sensor arrays; Neuroimaging

Funding

  1. Swedish Research Council
  2. European Union

Ask authors/readers for more resources

Background: Magnetoencephalography (MEG) is a method of studying brain activity via recordings of the magnetic field generated by neural activity. Modern MEG systems employ an array of low critical-temperature superconducting quantum interference devices (low-T-c SQUIDs) that surround the head. The geometric distribution of these arrays is optimized by maximizing the information content available to the system in brain activity recordings according to Shannon's theory of noisy channel capacity. New method: Herein, we present a theoretical comparison of the performance of low- and high-T-c SQUID-based multichannel systems in recordings of brain activity. Results: We find a high-T-c SQUID magnetometer-based multichannel system is capable of extracting at least 40% more information than an equivalent low-T-c SQUID system. The results suggest more information can be extracted from high-T-c SQUID MEG recordings (despite higher sensor noise levels than their low-T-c counterparts) because of the closer proximity to neural sources in the brain. Comparison with existing methods: We have duplicated previous results in terms of total information of multichannel low-T-c SQUID arrays for MEG. High-T-c SQUID technology theoretically outperforms its conventional low-T-c counterpart in MEG recordings. Conclusions:A full-head high-T-c SQUID-based MEG system's potential for extraction of more information about neural activity can be used to, e.g., develop better diagnostic and monitoring techniques for brain disease and enhance our understanding of the working human brain. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available