4.4 Article

nSTAT: Open-source neural spike train analysis toolbox for Matlab

Journal

JOURNAL OF NEUROSCIENCE METHODS
Volume 211, Issue 2, Pages 245-264

Publisher

ELSEVIER
DOI: 10.1016/j.jneumeth.2012.08.009

Keywords

Open-source; Point process; Generalized linear models; Neuroscience; Statistics; Data analysis; Signal processing; Spike trains

Funding

  1. NIH [F31NS058275]

Ask authors/readers for more resources

Over the last decade there has been a tremendous advance in the analytical tools available to neuro-scientists to understand and model neural function. In particular, the point process - generalized linear model (PP-GLM) framework has been applied successfully to problems ranging from neuro-endocrine physiology to neural decoding. However, the lack of freely distributed software implementations of published PP-GLM algorithms together with problem-specific modifications required for their use, limit wide application of these techniques. In an effort to make existing PP-GLM methods more accessible to the neuroscience community, we have developed nSTAT - an open source neural spike train analysis toolbox for Matlabe (R). By adopting an object-oriented programming (OOP) approach, nSTAT allows users to easily manipulate data by performing operations on objects that have an intuitive connection to the experiment (spike trains, covariates, etc.), rather than by dealing with data in vector/matrix form. The algorithms implemented within nSTAT address a number of common problems including computation of pen-stimulus time histograms, quantification of the temporal response properties of neurons, and characterization of neural plasticity within and across trials. nSTAT provides a starting point for exploratory data analysis, allows for simple and systematic building and testing of point process models, and for decoding of stimulus variables based on point process models of neural function. By providing an open-source toolbox, we hope to establish a platform that can be easily used, modified, and extended by the scientific community to address limitations of current techniques and to extend available techniques to more complex problems. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available