4.4 Article

Chondroitinase activity can be transduced by a lentiviral vector in vitro and in vivo

Journal

JOURNAL OF NEUROSCIENCE METHODS
Volume 199, Issue 2, Pages 208-213

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jneumeth.2011.05.007

Keywords

Chondroitin sulfate proteoglycan; Chondroitinase; Axonal growth; Spinal cord injury; Gene therapy

Funding

  1. NIH [SP01NS055976]
  2. Shriners Hospital for Children [85100]
  3. CHN Foundation [160746]

Ask authors/readers for more resources

The bacterial enzyme chondroitinase ABC (ChABC), which cleaves chondroitin sulfate glycosaminoglycan chains, can degrade inhibitory scar tissue formed following spinal cord injury, thereby promoting axonal growth and regeneration. However, delivering the active enzyme for prolonged periods presents practical limitations. To overcome these problems, we prepared a lentiviral vector (LV) encoding chondroitinase AC (Chase) together with the green fluorescent protein (GFP) reporter (Chase/LV) and demonstrated its expression and enzymatic activity in vitro and in vivo. Neural precursor cells infected with Chase/LV expressed the GFP reporter at levels that increased dramatically with time in culture. Enzymatic activity from the supernatant of the infected cells was demonstrated by dot blot assay using an antibody that recognizes the digested form of CSPG and was compared with the bacterial ChABC enzyme. Chick DRG cultures plated adjacent to the CSPG border and incubated with supernatant from Chase/LV-infected cells showed neurites growing into the CSPG area, a response similar to that after treatment with ChABC. In contrast, in control cultures, the neurites turned to avoid the inhibitory CSPG interface. Degradation of CSPG in these cultures was confirmed by specific CSPG antibodies. A single injection of Chase/LV into the spinal cord resulted in sustained secretion of the enzyme, whose activity was detected for 8 weeks by expression of GFP and evidence of the digested form of CSPG. This study demonstrates the efficacy of the Chase/LV vector and its potential as a therapeutic tool to reduce scar inhibition and promote axonal growth and repair following central nervous system injury. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available