4.4 Article

From EEG signals to brain connectivity: A model-based evaluation of interdependence measures

Journal

JOURNAL OF NEUROSCIENCE METHODS
Volume 183, Issue 1, Pages 9-18

Publisher

ELSEVIER
DOI: 10.1016/j.jneumeth.2009.04.021

Keywords

Connectivity; Regression analysis; Phase synchronization; Generalized synchronization; Model-based evaluation; EEG

Ask authors/readers for more resources

In the past, considerable effort has been devoted to the development of signal processing techniques aimed at characterizing brain connectivity from signals recorded from spatially-distributed regions during normal or pathological conditions. In this paper, three families of methods (linear and nonlinear regression, phase synchronization, and generalized synchronization) are reviewed. Their performances were evaluated according to a model-based methodology in which a priori knowledge about the underlying relationship between systems that generate output signals is available. This approach allowed us to relate the interdependence measures computed by connectivity methods to the actual values of the coupling parameter explicitly represented in various models of signal generation. Results showed that: (i) some of the methods were insensitive to the coupling parameter; (ii) results were dependent on signal properties (broad band versus narrow band); (iii) there was no ideal method, i.e., none of the methods performed better than the other ones in all studied situations. Nevertheless, regression methods showed sensitivity to the coupling parameter in all tested models with average or good performances. Therefore, it is advised to first apply these robust methods in order to characterize brain connectivity before using more sophisticated methods that require specific assumptions about the underlying model of relationship. In all cases, it is recommended to compare the results obtained from different connectivity methods to get more reliable interpretation of measured quantities with respect to underlying coupling. In addition, time-frequency methods are also recommended when coupling in specific frequency sub-bands (frequency-locking) is likely to occur as in epilepsy. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available