4.4 Article

Caged neuron MEA: A system for long-term investigation of cultured neural network connectivity

Journal

JOURNAL OF NEUROSCIENCE METHODS
Volume 175, Issue 1, Pages 1-16

Publisher

ELSEVIER
DOI: 10.1016/j.jneumeth.2008.07.023

Keywords

Neurochip; Multi-electrode array; Parylene; Connectivity

Funding

  1. NIH [NS044134]

Ask authors/readers for more resources

Traditional techniques for investigating cultured neural networks, such as the patch clamp and multi-electrode array, are limited by: (1) the number of identified cells which can be simultaneously electrically contacted, (2) the length of time for which cells can be studied, and (3) the lack of one-to-one neuron-to-electrocle specificity. Here, we present a new device - the caged neuron multi-electrode array which overcomes these limitations. This micro-machined device consists of an array of neurocages which mechanically trap a neuron near an extracellular electrode. While the cell body is trapped, the axon and dendrites can freely grow into the Surrounding area to form a network. The electrode is bi-directional, capable of both stimulating and recording action potentials. This system is non-invasive, so that all constituent neurons of a network can be studied over its lifetime with stable one-to-one neuron-to-electrode correspondence. Proof-of-concept experiments are described to illustrate that functional networks form in a neurochip system of 16 cages in a 4 x 4 array, and that suprathreshold connectivity can be fully mapped over several weeks. The neurochip opens a new domain in neurobiology for studying small cultured neural networks. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available