4.4 Article

A glue-based, screw-free method for implantation of intra-cranial electrodes in young mice

Journal

JOURNAL OF NEUROSCIENCE METHODS
Volume 171, Issue 1, Pages 126-131

Publisher

ELSEVIER
DOI: 10.1016/j.jneumeth.2008.03.001

Keywords

aging; development; electroencephalography; glue; oscillations; seizures

Ask authors/readers for more resources

Intra-cranial electroencephalographic recordings are increasingly employed in mice because of the availability of genetically manipulated mouse models. Currently, dental acrylic and anchoring screws are used to cement implanted electrodes. This technique works well for adult animals but often encounters difficulty when employed in young mice because their skulls are not strong enough to bear the anchoring screws. Here we describe a novel method favorable for implantation of intra-cranial electrodes in mice as young as postnatal 18 days and suitable for long-term intra-cranial electroencephalographic recordings. Our approach is to construct a multi-electrode assembly according to the desired stereotaxic coordinates of intra-cranial recordings and to secure the implanted electrode assembly to the skull via glue rather than dental acrylic/anchoring screws. The surgical operation for such electrode implantation is relatively quick and rarely associated with complications such as infection, bleeding, neurological deficits, spontaneous seizures or behavioral disturbances. The implanted electrodes are stable, allowing repeated monitoring for several months. Data obtained by simultaneous intra-hippocampal and intra-cortical recordings indicate that our method is suitable for the examination of behaviorally related electroencephalographic activities and experimentally induced seizures. Technical aspects of our methods are discussed, and the procedures for constructing the electrode assembly are presented in detail. (c) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available