4.7 Article

Regulation of Synaptic Extracellular Matrix Composition Is Critical for Proper Synapse Morphology

Journal

JOURNAL OF NEUROSCIENCE
Volume 34, Issue 38, Pages 12678-12689

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.1183-14.2014

Keywords

extracellular matrix; metalloproteinase; synapse

Categories

Funding

  1. Howard Hughes Medical Institute
  2. National Institutes of Health
  3. Jane Coffin Childs Memorial Fund Fellowship
  4. Directorate For Engineering
  5. Div Of Chem, Bioeng, Env, & Transp Sys [0954578] Funding Source: National Science Foundation

Ask authors/readers for more resources

Synapses are surrounded by a layer of extracellular matrix (ECM), which is instrumental for their development and maintenance. ECM composition is dynamically controlled by proteases, but how the precise composition of the ECM affects synaptic morphology is largely unknown. Through an unbiased forward genetic screen, we found that Caenorhabditis elegans gon-1, a conserved extracellular ADAMTS protease, is required for maintaining proper synaptic morphology at the neuromuscular junction. In gon-1 mutants, once synapse formation is complete, motor neuron presynaptic varicosities develop into large bulbous protrusions that contain synaptic vesicles and active zone proteins. A concomitant overgrowth of postsynaptic muscle membrane is found in close apposition to presynaptic axonal protrusions. Mutations in the muscle-specific, actin-severing protein cofilin (unc-60) suppress the axon phenotype, suggesting that muscle outgrowth is necessary for presynaptic protrusions. gon-1 mutants can also be suppressed by loss of the ECM components collagen IV (EMB-9) and fibulin (FBL-1). We propose that GON-1 regulates a developmental switch out of an initial pro-growth phase during which muscle arms grow out and form synapses with motor neuron axons. We postulate that this switch involves degradation or reorganization of collagen IV (EMB-9), whereas FBL-1 opposes GON-1 by stabilizing EMB-9. Our results describe a mechanism for regulating synaptic ECM composition and reveal the importance of precise ECM composition for neuronal morphology and synapse integrity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available