4.7 Article

The Shape of Dendritic Arbors in Different Functional Domains of the Cortical Orientation Map

Journal

JOURNAL OF NEUROSCIENCE
Volume 34, Issue 9, Pages 3231-3236

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.4985-13.2014

Keywords

cortical orientation map; dendritic shape in vivo; mechanism of orientation selectivity; rules of connectivity; two-photon imaging; visual cortex

Categories

Funding

  1. NIH [R01EY017925, R21EY020985]
  2. Dana Foundation
  3. Whitehall Foundation

Ask authors/readers for more resources

The neocortex is organized into macroscopic functional maps. However, at the microscopic scale, the functional preference and degree of feature selectivity between neighboring neurons can vary considerably. In the primary visual cortex, adjacent neurons in iso-orientation domains share the same orientation preference, whereas neighboring neurons near pinwheel centers are tuned to different stimulus orientations. Moreover, several studies have found greater orientation selectivity in iso-orientation domains than in pinwheel centers. These differences suggest that neurons sample local inputs in a spatially homogenous fashion and independently of the location of their soma on the orientation map. Here we determine whether dendritic geometry is affected by neuronal position on the orientation map. We labeled individual layer 2/3 pyramidal neurons with fluorescent dyes in specific domains of the orientation map in cat primary visual cortex and imaged their dendritic trees in vivo by two-photon microscopy. We found that the circularity and uniformity of dendritic trees is independent of somatic position on the orientation map. Moreover, the dendrites of neurons located close to pinwheel centers extend across all orientation domains in an unbiased fashion. Thus, unbiased dendritic trees appear to provide an anatomical substrate for the systematic variations in feature selectivity across the orientation map.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available