4.7 Article

A-Kinase Anchoring Protein-Calcineurin Signaling in Long-Term Depression of GABAergic Synapses

Journal

JOURNAL OF NEUROSCIENCE
Volume 33, Issue 6, Pages 2650-2660

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2037-12.2013

Keywords

-

Categories

Funding

  1. Whitehall Foundation
  2. Department of Defense intramural grant, Uniformed Services University

Ask authors/readers for more resources

The postsynaptic scaffolding A-kinase anchoring protein 79/150 (AKAP79/150) signaling complex regulates excitatory synaptic transmission and strength through tethering protein kinase A (PKA), PKC, and calcineurin (CaN) to the postsynaptic densities of neurons (Sanderson and Dell'Acqua, 2011), but its role in inhibitory synaptic transmission and plasticity is unknown. Using immunofluorescence and whole-cell patch-clamp recording in rat midbrain slices, we show that activation of postsynaptic D-2-like family of dopamine (DA) receptor in the ventral tegmental area (VTA) induces long-term depression (LTD) of GABAergic synapses on DA neurons through an inositol triphosphate receptor-mediated local rise in postsynaptic Ca2+ and CaN activation accompanied by PKA inhibition, which requires AKAP150 as a bridging signaling molecule. Our data also illuminate a requirement for a clathrin-mediated internalization of GABA(A) receptors in expression of LTDGABA. Moreover, disruption of AKAP-PKA anchoring does not affect glutamatergic synapses onto DA neurons, suggesting that the PKA-AKAP-CaN complex is uniquely situated at GABA(A) receptor synapses in VTA DA neurons to regulate plasticity associated with GABA(A) receptors. Drug-induced modulation of GABAergic plasticity in the VTA through such novel signaling mechanisms has the potential to persistently alter the output of individual DA neurons and of the VTA, which may contribute to the reinforcing or addictive properties of drugs of abuse.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available