4.7 Article

Broadband Cortical Desynchronization Underlies the Human Psychedelic State

Journal

JOURNAL OF NEUROSCIENCE
Volume 33, Issue 38, Pages 15171-15183

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2063-13.2013

Keywords

-

Categories

Funding

  1. Beckley Foundation
  2. MRC [MR/J00460X/1] Funding Source: UKRI
  3. Medical Research Council [MR/J00460X/1] Funding Source: researchfish

Ask authors/readers for more resources

Psychedelic drugs produce profound changes in consciousness, but the underlying neurobiological mechanisms for this remain unclear. Spontaneous and induced oscillatory activity was recorded in healthy human participants with magnetoencephalography after intravenous infusion of psilocybin-prodrug of the nonselective serotonin 2A receptor agonist and classic psychedelic psilocin. Psilocybin reduced spontaneous cortical oscillatory power from 1 to 50 Hz in posterior association cortices, and from 8 to 100 Hz in frontal association cortices. Large decreases in oscillatory power were seen in areas of the default-mode network. Independent component analysis was used to identify a number of resting-state networks, and activity in these was similarly decreased after psilocybin. Psilocybin had no effect on low-level visually induced and motor-induced gamma-band oscillations, suggesting that some basic elements of oscillatory brain activity are relatively preserved during the psychedelic experience. Dynamic causal modeling revealed that posterior cingulate cortex desynchronization can be explained by increased excitability of deep-layer pyramidal neurons, which are known to be rich in 5-HT2A receptors. These findings suggest that the subjective effects of psychedelics result from a desynchronization of ongoing oscillatory rhythms in the cortex, likely triggered by 5-HT2A receptor-mediated excitation of deep pyramidal cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available