4.7 Article

Phox2b-Expressing Retrotrapezoid Neurons Are Intrinsically Responsive to H+ and CO2

Journal

JOURNAL OF NEUROSCIENCE
Volume 33, Issue 18, Pages 7756-7761

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.5550-12.2013

Keywords

-

Categories

Funding

  1. NIH [HL074011, HL108609]

Ask authors/readers for more resources

Central respiratory chemoreceptors sense changes in CO2/H+ and initiate the adjustments to ventilation required to preserve brain and tissue pH. The cellular nature of the sensors (neurons and/or glia) and their CNS location are not conclusively established but the glutamatergic, Phox2b-expressing neurons located in the retrotrapezoid nucleus (RTN) are strong candidates. However, a direct demonstration that RTN neurons are intrinsically sensitive to CO2/H+, required for designation as a chemosensor, has been lacking. To address this, we tested the pH sensitivity of RTN neurons that were acutely dissociated from two lines of Phox2b-GFP BAC transgenic mice. All GFP-labeled cells assayed by reverse transcriptase-PCR (n = 40) were Phox2b+, VGlut2+, TH-, and ChAT-, the neurochemical phenotype previously defined for chemosensitive RTN neurons in vivo. We found that most dissociated RTN neurons from both lines of mice were CO2/H+-sensitive (similar to 79%), with discharge increasing during acidification and decreasing during alkalization. The pH-sensitive cells could be grouped into two populations characterized by similar pH sensitivity but different basal firing rates, as previously observed in recordings from GFP-labeled RTN neurons in slice preparations. In conclusion, these data indicate that RTN neurons are inherently pH-sensitive, as expected for a respiratory chemoreceptor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available